REAL ANALYSIS PRELIMINARY EXAM AUGUST, 2025

All responses require justification.

(1) Let

$$\omega = (2x + e^{y^2 z})dy \wedge dz + \sin(x^2 + z^2)dz \wedge dx + z^3 dx \wedge dy$$

and let Ω be the region inside of the sphere $x^2+y^2+z^2=4$ and outside the cone $x^2+y^2-z^2=0$. Find $\int_{\partial\Omega}\omega$, where $\partial\Omega$ is the boundary of the region Ω . Assume that the orientation of the boundary $\partial\Omega$ comes from the usual orientation inside Ω .

(2) Let

$$f(x,y) = \begin{cases} \frac{x^3 + 6y^3}{x^2 + 2y^2}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if}(x,y) = (0,0). \end{cases}$$

- (a) Prove that f(x, y) is continuous at (0, 0).
- (b) Is f(x,y) differentiable at (0,0)? Please explain.
- (3) Suppose that K is a subset of \mathbb{R}^n such that every continuous function from K to \mathbb{R} is bounded. Prove that K is compact.
- (4) Let f(x) be a smooth periodic function with the period 2π . Assume that for all x,

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)).$$

Express $\int_0^{2\pi} (f(x))^2 dx$ in terms of numbers (a_n) and (b_n) . Justify your reasoning.

- (5) Show that if (a_n) is a decreasing sequence of real numbers such that $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} na_n = 0$.
- (6) Suppose that $f \in C^2(\mathbf{R})$, $g \in C^0(\mathbf{R})$ satisfy f''(x) + g(x)f'(x) f(x) = 0 for all $x \in \mathbf{R}$, and that f(0) = f(1) = 0. Prove that f vanishes identically on [0, 1]. (HINT: What can you say about the extrema of a function on a closed interval?)
- (7) Prove that the function

$$f(x) = \frac{\sin(x^3)}{x}$$

is uniformly continuous on $(0, \infty)$.

(8) Compute

$$\lim_{n \to \infty} \int_0^\infty \frac{x}{\sqrt{1+x^n}} dx.$$

Justify your computations.